首页> 外文OA文献 >On the role of a conserved, potentially helix-breaking residue in the tRNA-binding α-helix of archaeal CCA-adding enzymes
【2h】

On the role of a conserved, potentially helix-breaking residue in the tRNA-binding α-helix of archaeal CCA-adding enzymes

机译:关于古细菌CCA添加酶的tRNA结合α-螺旋中保守的,可能潜在的螺旋断裂残基的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Archaeal class I CCA-adding enzymes use a ribonucleoprotein template to build and repair the universally conserved 3′-terminal CCA sequence of the acceptor stem of all tRNAs. A wealth of structural and biochemical data indicate that the Archaeoglobus fulgidus CCA-adding enzyme binds primarily to the tRNA acceptor stem through a long, highly conserved α-helix that lies nearly parallel to the acceptor stem and makes many contacts with its sugar-phosphate backbone. Although the geometry of this α-helix is nearly ideal in all available cocrystal structures, the helix contains a highly conserved, potentially helix-breaking proline or glycine near the N terminus. We performed a mutational analysis to dissect the role of this residue in CCA-addition activity. We found that the phylogenetically permissible P295G mutant and the phylogenetically absent P295T had little effect on CCA addition, whereas P295A and P295S progressively interfered with CCA addition (C74>C75>A76 addition). We also examined the effects of these mutations on tRNA binding and the kinetics of CCA addition, and performed a computational analysis using Rosetta Design to better understand the role of P295 in nucleotide transfer. Our data indicate that CCA-adding activity does not correlate with the stability of the pre-addition cocrystal structures visualized by X-ray crystallography. Rather, the data are consistent with a transient conformational change involving P295 of the tRNA-binding α-helix during or between one or more steps in CCA addition.
机译:加入古细菌I类CCA的酶使用核糖核蛋白模板来构建和修复所有tRNA受体茎的3'末端CCA通用保守序列。大量的结构和生化数据表明,添加古生球菌CCA的酶主要通过一个高度保守的长α-螺旋与tRNA受体茎结合,该螺旋几乎与受体茎平行,并与其糖-磷酸骨架形成许多接触。尽管此α-螺旋的几何结构在所有可用的共晶体结构中几乎都是理想的,但该螺旋在N末端附近包含高度保守的,可能破坏螺旋的脯氨酸或甘氨酸。我们进行了突变分析,以分析此残基在CCA加成活性中的作用。我们发现系统发育允许的P295G突变体和系统发育缺失的P295T对CCA添加的影响很小,而P295A和P295S逐渐干扰CCA添加(C74> C75> A76添加)。我们还检查了这些突变对tRNA结合和CCA添加动力学的影响,并使用Rosetta Design进行了计算分析,以更好地了解P295在核苷酸转移中的作用。我们的数据表明,添加CCA的活性与X射线晶体学显示的预添加共晶结构的稳定性不相关。而是,数据与CCA添加过程中一个或多个步骤之间或之间的tRNA结合α-螺旋的P295的瞬时构象变化一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号